If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2+6p-6=0
a = 7; b = 6; c = -6;
Δ = b2-4ac
Δ = 62-4·7·(-6)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{51}}{2*7}=\frac{-6-2\sqrt{51}}{14} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{51}}{2*7}=\frac{-6+2\sqrt{51}}{14} $
| 5a-4(-6a+5)=125 | | 6=-5/2+b | | 7v-17=4v | | 6=-2.5+b | | 1+2-4=6y+6 | | x(3/2)=16.2 | | 9(x+3)=-75 | | -3+10=-3+4x-3 | | 6x+1=4(x-1) | | 63=-6+3(6x+5) | | x(2/3)=16.2 | | 2/3x=16.2 | | 4u+8=10u+8 | | a^2+4a-63=0 | | X+6=2(y+6) | | 4=v11-2 | | -1,3a+4=2 | | 6b+4=10 | | x+(1/2x)=16.2 | | 1/4z2/7=5/7 | | 7a-4=45 | | m7-4=3 | | 11y-14=19 | | 1,2x-3=2 | | -3m-4=-1 | | 2(5+8)=4(6x+9) | | 24.5x+0.5(x-9)=-11.5+20x | | -6a-9=-15 | | 5x=60x= | | 12-7n=5n-4 | | 2x-2/4=3 | | -1/2x+9=13 |